equação Graceli quântica [] G* = = [ ] ω , , / T] / c [ [x,t] ] = |
equação Graceli tensorial quântica [1] G [DR] = .= = |
equação Graceli tensorial quântica [2] G [DR] = .= / / G* = = [ ] ω , , / T] / c [ [x,t] ] = |
G [DR] = =
G [DR] = =
EQUAÇÃO QUÂNTICA TENSORIAL GRACELI.
G [DR] = .=
G [DR] = É O TENSOR GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .
G [DR] = É O TENSOR GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .
G [DR] = =
G [DR] = =
G [DR] = É O TENSOR GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .
G [DR] = É O TENSOR GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .
] ω , , =
A equação de Pauli , também conhecida como Equação Schrödinger-Pauli, é uma formulação da Equação de Schrödinger para um spin-partícula que leva em consideração a interação da rotação de uma partícula com o campo eletromagnético. Essas situações são os casos não-relativísticos da Equação de Dirac, onde as partículas em questão tem uma velocidade muito baixa para que os efeitos da relatividade tenham importância, podendo ser ignorados.
A equação de Pauli foi formulada por Wolfgang Pauli no ano de 1927.
Detalhes[editar | editar código-fonte]
A equação de Pauli é mostrada como:
- /
equação Graceli tensorial quântica [2] G [DR] = .= / / G* = = [ ] ω , , / T] / c [ [x,t] ] = |
Onde:
- é a massa da partícula.
- é a carga da partícula.
- é um vetor de três componentes do dois-por-dois das matrizes de Pauli. Isto significa que cada componente do vetor é uma matriz de Pauli.
- é o vetor de três componentes da dinâmica dos operadores. Os componentes desses vetores são:
- é o vetor de três componentes do potencial magnético.
- é o potencial escalar elétrico.
- são os dois componentes spinor da onda, podem ser representados como .
De forma mais precisa, a equação de Pauli é:
- /
equação Graceli tensorial quântica [2]
G [DR] = .= /
/ G* = = [ ] ω , , / T] / c [ [x,t] ] =
Mostra que o espaço Hamiltoniano (a expressão entre parênteses ao quadrado) é uma matriz operador dois-por-dois, por conta das matrizes de Pauli.
Na mecânica quântica, equação de Dirac é uma equação de onda relativística proposta por Paul Dirac em 1928 que descreve com sucesso partículas elementares de spin-½, como o elétron. Anteriormente, a equação de Klein-Gordon (uma equação de segunda ordem nas derivadas temporais e espaciais) foi proposta para a mesma função, mas apresentou severos problemas na definição de densidade de probabilidade. A equação de Dirac é uma equação de primeira ordem, o que eliminou este tipo de problema. Além disso, a equação de Dirac introduziu teoricamente o conceito de antipartícula, confirmado experimentalmente pela descoberta em 1932 do pósitron, e mostrou que spin poderia ser deduzido facilmente da equação, ao invés de postulado. Contudo, a equação de Dirac não é perfeitamente compatível com a teoria da relatividade, pois não prevê a criação e destruição de partículas, algo que apenas uma teoria quântica de campos poderia tratar.
A equação propriamente dita é dada por:
- ,
- /
equação Graceli tensorial quântica [2] G [DR] = .= / / G* = = [ ] ω , , / T] / c [ [x,t] ] = |
na qual m é a massa de repouso do elétron, c é a velocidade da luz, p é o operador momentum linear é a constante de Planck divida por 2π, x e t são as coordenadas de espaço e tempo e ψ(x, t) é uma função de onda com quatro componentes.
Fórmula da variação de Compton[editar | editar código-fonte]
Compton usou uma combinação de três fundamentais fórmulas representando os diversos aspectos da física clássica e moderna, combinando-os para descrever o procedimento quântico da luz[3].
- Luz como uma partícula;
- Dinâmica Relativística;
- Trigonometria.
O resultado final nos dá a equação do espalhamento de Compton:
- /
equação Graceli tensorial quântica [2] G [DR] = .= / / G* = = [ ] ω , , / T] / c [ [x,t] ] = |
Onde:
- é o comprimento de onda do fóton antes do espalhamento,
- é o comprimento de onda do fóton depois do espalhamento,
- me é a massa do elétron,
- é conhecido como o comprimento de onda de Compton,
- θ é o ângulo pelo qual a direção do fóton muda,
- h é a constante de Planck, e
- c é a velocidade da luz no vácuo.
Coletivamente, o comprimento de onda de Compton é .
Desenvolvimento formal[editar | editar código-fonte]
A eletrodinâmica quântica é uma teoria abeliana de calibre, dotada de um grupo de calibre U(1).
O campo de calibre que media a interação entre campos de spin 1/2, é o campo eletromagnético, que se apresenta sob a forma de fótons.
A descrição da interação se dá através da lagrangiana para a interação entre elétrons e pósitrons, que é dada por:
- /
equação Graceli tensorial quântica [2] G [DR] = .= / / G* = = [ ] ω , , / T] / c [ [x,t] ] = |
onde e sua adjunta de Dirac são os campos representando partículas eletricamente carregadas, especificamente, os campos do elétron e pósitron representados como espinores de Dirac.
Comentários
Postar um comentário